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Abstract

Retrieval-augmented language models (LMs),001
which condition their predictions on text re-002
trieved from large external datastores, have re-003
cently shown significant perplexity improve-004
ments compared to standard LMs. One such005
approach, the kNN-LM, interpolates any ex-006
isting LM’s predictions with the output of a007
k-nearest neighbors model and requires no ad-008
ditional training. In this paper, we explore the009
importance of lexical matching and vector sim-010
ilarity in the context of items retrieved by kNN-011
LM. We find two trends: (1) the presence of012
large overlapping n-grams between the datas-013
tore and evaluation set plays an important factor014
in strong performance, even when the datas-015
tore is derived from the training data; and (2)016
kNN-LM is more effective on average when017
the top retrieved items have high vector similar-018
ity with the query. Based on our analysis, we019
define a new formulation of the kNN-LM that020
uses an adaptive interpolation coefficient rather021
than a static value for all queries. We measure022
empirically the effectiveness of our approach023
on two English language modeling datasets,024
Wikitext-103 and PG-19. Our re-formulation025
of the kNN-LM is beneficial in both cases, and026
leads to nearly 4% improvement in perplexity027
on the Wikitext-103 test set.028

1 Introduction029

Recently, a new class of language models (LMs)030

that are augmented with retrieval capabilities have031

led to substantial improvements over standard neu-032

ral LMs (Lewis et al., 2020; He et al., 2020; Yo-033

gatama et al., 2021; Borgeaud et al., 2021; Wu034

et al., 2022; Thoppilan et al., 2022, inter alia). Fur-035

thermore, LMs with retrieval warrant investigation036

as they provide benefits for many tasks (Zamani037

et al., 2022). These approaches generally involve a038

backbone neural LM that interacts with a retrieval039

component of varying complexity to find relevant040

documents. In this work, we analyze and improve041

a specific and simple type of retrieval-augmented042
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Figure 1: We present an extension to kNN-LM that
conditions the interpolation coefficient (λ) on the vector
distance of retrieved contexts.

language model, the kNN-LM originally proposed 043

by Khandelwal et al. (2020). 044

The kNN-LM is non-parametric — it works by 045

retrieving instances from an external datastore at 046

each decoding timestep, and it improves language 047

model performance without requiring additional 048

training. In essence, the kNN-LM interpolates 049

a base LM’s predicted probability distribution of 050

the next word with a distribution formed by re- 051

trieving vectors similar to the current hidden state. 052

kNN-LM includes two tunable hyperparameters: 053

the number of items to retrieve (k) and an interpo- 054

lation coefficient (λ). The method’s effectiveness 055

depends crucially on source and size of the retrieval 056

datastore: it is most effective when using a very 057

large datastore with orders of magnitude more to- 058

kens than seen in the training corpus, but Khandel- 059

wal et al. (2020) also observe improvements with 060

smaller datastores. 061

Modern neural models have massive capacity to 062

memorize their training data (Zhang et al., 2017). 063

Nonetheless, simply using an LM’s training corpus 064

as the source for the datastore works well for kNN- 065

LM, as test perplexity on the Wikitext-103 dataset 066

decreases substantially from 18.65 to 16.12. How- 067

ever, it remains unclear how and why the kNN-LM 068

achieves these improvements. Which types of to- 069

kens and contexts does it improve most on? In §3, 070

we analyze the kNN-LM’s behavior with respect 071

to parts of speech, vector distance between context 072
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and retrievals, and lexical overlap.073

Our analysis reveals the syntactic categories074

kNN-LM is most helpful with (e.g. proper nouns),075

that low vector distance between query and context076

vectors correlates with kNN-LM improvements077

over the base language model, and that the kNN-078

LM is sensitive to lexical patterns (albeit the degree079

of sensitivity is domain specific). Next, we leverage080

our knowledge of when the kNN-LM helps to de-081

velop an improved reformulation. In particular, we082

develop a simple yet effective modification of the083

kNN-LM that employs an adaptive interpolation084

coefficient instead of a static one as in the original085

method. Our method chooses this coefficient (λ)086

conditioned on the query and its retrieved items087

(see Figure 1). While it introduces new hyperpa-088

rameters, we show that the additional hyperparam-089

eter tuning comes at negligible cost. Importantly,090

our empirical results demonstrate that our newly091

introduced reformulation of kNN-LM is beneficial092

for both encylopedic text and book data, and leads093

to an improvement of nearly 4% perplexity over094

the the vanilla kNN-LM, measured on the English095

language modeling Wikitext-103 test set. Broadly,096

we hope that our insights and methods can help fa-097

cilitate future development of retrieval-augmented098

LMs.099

2 Language Modeling with kNN-LM100

The kNN-LM improves over a base language101

model by explicitly memorizing the LM’s train-102

ing data. It stores exact sentences from the training103

data in its datastore that can be accessed during104

language model inference to produce a k-nearest105

neighbor next word distribution that is interpolated106

with the base model’s prediction. Interpolation is107

preferred for similar reasons as approximate ma-108

trix factorization in collaborative filtering — the109

universe of text patterns is sparse and lossless com-110

pression of the training data alone is not sufficient111

to model new patterns. In this section, we explain112

the specifics of the kNN-LM’s inner workings in113

order to guide our analysis.114

2.1 General Approach115

The kNN-LM (Khandelwal et al., 2020) is a lan-116

guage model with a retrieval component. Like117

all language models, it predicts the the word at118

time step t conditioned on the history of words:119

P (wt|w0, w1, . . . , wt−1). Neural language mod-120

els encode the history of words using a vector h:121

P (wt|ht−1). What makes the kNN-LM novel is 122

that it uses a pre-trained language model to en- 123

code a collection of documents, and then retrieves 124

documents from this collection based on vector 125

similarity in order to improve its next word predic- 126

tion. Notably, the retrieval is completely latent — 127

no supervised ranking information is used and doc- 128

uments are simply retrieved using vector similarity. 129

The kNN-LM follows a particular way of encod- 130

ing the collection of documents into a datastore. 131

Consider document xi consisting of n words. The 132

kNN-LM encodes the first n− 1 words as a vector 133

and this becomes the key of document xi, referred 134

to as ki. The n-th word is saved as the value vi. In 135

practice, and since kNN-LM is used for language 136

modeling, a sequence with n words is recorded as 137

n−1 documents: for any t ≤ n, a document whose 138

key is words w1 to wt−1 and value is wt is built. 139

After the datastore is built, the kNN-LM is eval- 140

uated on a dataset with m words, predicting words 141

from left-to-right. Retrieval in kNN-LM is done 142

by measuring Euclidean distance d(., .) between 143

vector encodings of the query qj (corresponding to 144

the context of the j-th word in the evaluation data) 145

and the keys in the datastore. The values from re- 146

trieved documents define a new distribution of the 147

next word: 148

PKNN (wt|qt) ∝
∑

(ki,vi)

1wt=vi exp(−d(ki, qt))

(1)

149

The best performance typically involves mixing 150

the original and kNN-based word distributions us- 151

ing a tunable hyperparameter λ: 152

Pmix(wt|qt) = λPKNN (wt|qt) + (1− λ)P (wt|qt)
(2)

153

3 Analysis: When is kNN-LM effective? 154

In the original kNN-LM work, the authors point 155

out that the model generally helps for rare patterns, 156

factual knowledge, and names (Khandelwal et al., 157

2020). These observations are primarily qualita- 158

tive and anecdotal. In this section we perform au- 159

tomated analysis to more specifically understand 160

when kNN-LM is beneficial, with the aim to un- 161

cover systematic behavior that can be leveraged to 162

extend kNN-LM and improve its effectiveness at 163

next word prediction. 164
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Figure 2: Relative perplexity improvement of kNN-
LM compared to the base language model measured
on the Wikitext-103 validation set. Query contexts are
bucketed by vector distance of the closest retrieved item.

3.1 Distance between Latent Vectors165

The kNN-LM encodes the context into a fixed-166

length query vector and uses this to retrieve similar167

contexts from the datastore. Not every retrieved168

context will have a key whose associated value169

matches the ground-truth next word, and a priori,170

it is difficult to know when a retrieved context is171

helpful. Nonetheless, kNN-LM is typically helpful172

when at least 1 of the retrieved keys corresponds to173

the true next word.174

Figure 2 examines this intuition a posteriori on175

the Wikitext-103 validation set. First, we bucket176

query contexts according to the vector distance177

of their top retrieved item. The buckets are non-178

overlapping and each contain 5% of the query con-179

texts — the first contains the 5% of queries that180

have lowest vector distance with their top retrieved181

item, the next contains the next 5% lowest, and so182

on. Plotted in the figure is the relative perplexity183

improvement of kNN-LM compared to the base184

language model. It becomes obvious that the buck-185

ets with lower vector distance are the ones where186

kNN-LM is more beneficial, supporting the hypoth-187

esis that vector distance is a proxy for relevance.188

3.2 Lexical Overlap189

Another possible proxy for relevance is lexical over-190

lap. Rather than directly using neural network hid-191

den representations to form buckets, we first con-192

vert contexts into TFIDF vectors (using 32-token193

trailing window), which are a popular and effective194

bag-of-words representation (Chen et al., 2017).195

We use these representations to measure vector dis-196

tance solely for bucketing (retrieval is still done197

using the kNN-LM’s neural representations). The198

relative perplexity for this setting is reported in199

Figure 2, and aligns well with the bucketing re-200

Dev Dev-8 Test Test-8

Wikitext
BaseLM 17.96 17.96 18.65 18.65
kNN-LM 16.06 17.28 16.12 18.05

Ours 15.72 17.26 15.50 18.03

PG-19
BaseLM 60.83 60.83 50.95 50.95
kNN-LM 52.49 53.34 43.93 44.97

Ours 52.08 53.06 43.58 44.78

Table 1: Perplexity on Wikitext-103 and PG-19 datasets.
Dev-8 and Test-8 contain the same data as Dev and Test,
but overlapping n-grams (n ≥ 8) with the evaluation
data have been removed from the kNN-LM datastore.
The adaptive coefficient (Ours) is described in §4.

ported in the previous subsection. This suggests 201

that kNN-LM is beneficial when the current con- 202

text has high lexical overlap with a context saved 203

in the datastore. 204

To further examine the relationship between 205

kNN-LM performance and lexical overlap between 206

contexts, we rebuild the index that kNN-LM uses to 207

retrieve items in a way to minimize lexical overlap. 208

We run the base language model over the training 209

corpus, but ignore tokens that correspond to large 210

overlapping n-grams (n ≥ 8) with the evaluation 211

data.1 The Wikitext-103 perplexity for kNN-LM 212

compared to the base language model using the 213

original and restricted datastore is shown in Ta- 214

ble 1. Trend-wise, the kNN-LM works better when 215

there is high lexical overlap between query and its 216

retrieved contexts, but when large overlapping n- 217

grams are removed from the datastore, the benefit 218

of the kNN-LM substantially diminishes. 219

3.3 Part-of-Speech Tags 220

Another lens, syntax, can shed light on kNN-LM 221

performance outside of document relevance. To 222

further understand which types of words benefit 223

most from kNN-LM, we group tokens by their 224

part-of-speech. Then we compute validation per- 225

plexity separately for each group using both the 226

base language model and the kNN-LM. To get part- 227

of-speech tags, we segment the data into sentences 228

and label words using the tagger from Stanza2 with 229

the universal dependencies output space. We in- 230

1To ensure the n-gram context does not leak into the data-
store, we follow Brown et al. (2020) and ignore tokens corre-
sponding to a 200-token window centered around the n-gram.

2https://stanfordnlp.github.io/stanza/
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Figure 3: Perplexity of the base language model grouped
by part-of-speech (top), and relative improvement of the
kNN-LM (bottom).

clude categories with frequency greater than 1K in231

the Wikitext-103 validation data.232

The results are included in Figure 3. We find that233

kNN-LM is most helpful for syntactic categories234

where the base language model most struggles,235

e.g. the original perplexity for adjectives (ADJ)236

is 105.37 and the kNN-LM improves perplexity by237

16.3% for this category. The five other categories238

that had worst perplexity (ADV, NOUN, NUM,239

PROPN, VERB) are also where kNN-LM works240

best. It’s satisfying to see proper noun (PROPN)241

included here, as it reflects intuition of kNN-LM242

assisting with factual knowledge.243

4 A New Formulation for kNN-LM244

In the previous section, we analysed when kNN-245

LM is most helpful. We use this information to246

design a new formulation of kNN-LM that can ex-247

ploit this behavior. The original kNN-LM uses the248

same interpolation coefficient (λ) for every exam-249

ple, which may not be desirable. As our analysis250

reveals, we can predict when the kNN-LM is most251

beneficial, which naturally leads us to a new for-252

mulation with an adaptive λ:253

P
′
mix(wt|.) = λqPKNN (wt|.) + (1− λq)P (wt|.)

(3)
254

where λq is a function of the query and its retrieved255

documents rather than constant for all queries.256

0 20 40 60 80 100
Distance Percentile

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Co
ef

fic
ie

nt
 (

q)

1
2
8
32

Figure 4: Sets of coefficients (λq) tuned on the Wikitext
validation set for different bucket sizes (1, 2, 8, 32). The
buckets are balanced.

Using the same λ for all examples is limiting 257

— it does not effectively leverage retrieval when 258

neighboring keys are clearly relevant (like shown 259

in Figure 1), nor does it trust the base language 260

model when retrieved items are dissimilar from the 261

query context. Of course, the critical decision here 262

is how to define partitions. One option that we ex- 263

plore is the “Distance Percentile” (measured with 264

“minimum vector distance”) covered in the previous 265

section. If we partition the data into two balanced 266

buckets, we would define the first bucket as queries 267

with “minimum vector distance” within the [0, 50] 268

percentile range and the second bucket including 269

those in the (50, 100] range. For each bucket we 270

perform the same hyperparameter search over coef- 271

ficients as in kNN-LM.3 Sets of coefficients using 272

different bucket sizes and tuned for Wikitext-103 273

are shown in Figure 4. 274

5 Experiments and Results 275

To evaluate the effectiveness of our new formula- 276

tion of kNN-LM we measure perplexity on two 277

English language modeling datasets. The first is 278

the Wikitext-103 corpus (Merity et al., 2016) used 279

by Khandelwal et al. (2020). The second is PG-19 280

(Rae et al., 2020), which we include because it con- 281

sists of books and is thematically distinct from the 282

encyclopedic documents in Wikitext-103. 283

The target baseline we aim to improve on is the 284

original formulation of kNN-LM. As described in 285

§2.1, the datastore is built by encoding a large text 286

corpus, in this case the training set. The kNN-LM 287

is already a substantial improvement over the back- 288

bone language model (Baevski and Auli, 2019). 289

3See Khandelwal et al. 2020 Figure 5.
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b Dev0 Dev1 Dev

1 17.091 14.989 16.091
2 16.909 14.854 15.933
4 16.763 14.767 15.815
8 16.665 14.727 15.743

16 16.637 14.722 15.727
32 16.629 14.722 15.721
64 16.622 14.724 15.719

128 16.619 14.724 15.715

Table 2: Validation perplexity on Wikitext-103. Used
for hyperparameter tuning.

By using an adaptive interpolation coefficient we290

improve the performance even further.291

5.1 Experimental Setup and Pre-processing292

Wikitext-103 The data is split 103M/217K/245K293

tokens for training, validation, and test. The vocab-294

ulary is at the word-level and includes 267K tokens.295

We use the already trained model from Khandelwal296

et al. (2020).297

PG-19 To understand when the adaptive coeffi-298

cient is desirable compared with a static coefficient,299

we include PG-19 in our experiments. PG-19 con-300

sists of books and is thematically distinct form301

the encyclopedic douments in the Wikitext-103302

data. We sample 2,000 books from the training303

corpus, which gives approximately 150M tokens304

and is close in size to Wikitext-103. We use the305

standard validation split (50 books) and test split306

(100 books). We use word-level tokenization with307

a 300K vocabulary derived from our constructed308

training split. We train our own model using the309

same architecture and hyperparameters from Khan-310

delwal et al. (2020).311

5.2 Tuning kNN-LM Hyperparameters312

For the original formulation of kNN-LM there are313

two hyperparameters to tune: the number of items314

to retrieve (k) and the interpolation coefficient (λ).315

These are tuned on the validation set. We intro-316

duce an important hyperparameter for the number317

of buckets to use (b)4 and tune a new interpolation318

coefficient (λq) separately for each bucket. Since319

each bucket is assigned its own coefficient, the total320

4The number of buckets divides the data evenly, and each
is associated with partition boundaries. The queries with a
minimum vector distance greater than the lower boundary and
less than the upper boundary are included in the bucket.

number of hyperparameters grows with the num- 321

ber of buckets. Even so, hyperparameter tuning is 322

only required for the validation data and we cache 323

expensive computation so that the cost of hyperpa- 324

rameter search is negligible (see §5.2.1 for more 325

details). 326

To select the number of buckets (b), we use the 327

first half of the validation data (Dev0) to define par- 328

tition boundaries, and find the best performing in- 329

terpolation coefficient for each partition separately. 330

Then we measure perplexity on the second half 331

of the validation data (Dev1) using those partition 332

boundaries and coefficients. The choice of b that 333

gives the best perplexity on Dev1 is the one we ulti- 334

mately use. With b chosen, we then re-compute the 335

partition boundaries and corresponding coefficients 336

using the full validation data (Dev), which will be 337

used to evaluate against the test data. 338

An example of tuning for b on Wikitext-103 is 339

shown in Table 2. On Dev0, increasing b always 340

leads to better perplexity, albeit with diminishing 341

returns. On the held-out data (Dev1), since the 342

partition boundaries and coefficients are chosen 343

using Dev0, it is not guaranteed that increasing b 344

improves perplexity. Similarly, tuning the partition 345

boundaries and coefficients on the validation data 346

does not guarantee improvement on the test data. 347

Even so, empirically we find that our adaptive co- 348

efficient is always at least as effective as the static 349

coefficient. 350

5.2.1 Computational Cost of Tuning 351

Using the adaptive coefficient, the number of hy- 352

perparameters scales with the size of b and is more 353

than order of magnitude more than what is used 354

for kNN-LM. That said, by effectively caching 355

query vectors, retrieved items, and associated vec- 356

tor distances the cost associated with hyperparame- 357

ter search is negligible. The initial time to compute 358

these values takes hours and is the same as with 359

kNN-LM, but after computed it takes less than 5 360

minutes to perform the hyperparameter search for 361

the adaptive coefficient on the Wikitext-103 data.5 362

We release our implementation with value caching 363

on github: github.com/anonymous/submit. 364

5.3 Perplexity on WikiText-103 365

Table 3 reports the perplexity from our approach 366

and various baselines on the Wikitext-103 valida- 367

tion and test sets. Our approach scores 15.50 per- 368

5All experiments are run on a single Titan X GPU with
256GB CPU memory.
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λ b k Dev Test

Base LM - - - 17.96 18.65
kNN-LM 0.25 1 1024 16.06 16.12
+CCache 0.25 1 1024 15.81 15.79

Ours (TFIDF) λq 32 1024 15.76 15.54
Ours λq 32 1024 15.72 15.50

Table 3: Test and validation perplexity on Wikitext-103.
This is our main result and demonstrates that our new
formulation with adaptive coefficient (λq) substantially
improves over kNN-LM.

plexity on the test set. This is a 16.9% improvement369

over the base language model and a 3.8% improve-370

ment over the original kNN-LM formulation.371

For the number of buckets (b) we found 32 to372

work best (see Table 2), and the set of coefficients373

are the same as shown in Figure 4. Our search374

space includes b ∈ {1, 2, 4, 8, 16, 32, 64, 128} and375

λq ∈ {0.05, 0.1, 0.15, . . . , 0.9, 0.95}.376

Khandelwal et al. (2020) find that retrieving from377

recent history using the continuous cache model378

(CCache; Grave et al. 2017) is complementary to379

retrieving from the datastore, improving perplex-380

ity when combined with kNN-LM. This type of381

caching is out of scope of this paper, and our ap-382

proach already outperforms the combined model.383

5.4 Perplexity on PG-19384

To further understand how lexical overlap influ-385

ences kNN-LM performance we evaluate using the386

PG-19 dataset. Compared to Wikipedia, text across387

books has much less repetition, so text retrieved388

from the datastore is less likely to overlap with389

n-grams in the evaluation data.390

We train our own model using the same architec-391

ture and hyperparams for Wikitext-103, and report392

perplexity in Table 1. We found b = 32 works best.393

Despite the challenging properties of the book data,394

kNN-LM is still effective. Our re-formulation is395

marginally beneficial here.396

5.5 Filtering n-grams from the Datastore397

Our analysis thus far indicates that lexical overlap398

is important for strong kNN-LM performance. To399

test this directly for the adaptive coefficient, we400

follow the procedure described in §3.2 rebuild the401

datastore but remove from the index large n-grams402

(n ≥ 8) and their surrounding tokens that also403

appear in the evaluation data.404

λ b k Dev

Dense 0.25 1 1024 16.06
Dense λq 32 1024 15.72
TFIDF λq 32 1024 15.76

Dense 0.05 1 1 17.10
Dense 0.15 1 8 16.66
Dense 0.25 1 64 16.31

Dense λq 16 1 16.63
Dense λq 128 8 16.19
Dense λq 16 64 15.90

TFIDF λq 32 1 16.38
TFIDF λq 64 8 16.06
TFIDF λq 16 64 15.87

Table 4: Validation perplexity on Wikitext-103 used
for ablation analysis. The kNN-LM uses a single static
value for the interpolation coefficient (λ), our method
uses an adaptive coefficient (λq). This table includes
our approach when using the learned vector distance
(Dense) or bag-of-words representation (TFIDF). Based
on how many items are retrieved (k), our approach
works best with a different amount of buckets (b).

The results for this experiment on both Wikitext- 405

103 and PG-19 are shown in Table 1. Most of kNN- 406

LM’s improvements on Wikitext-103 come from re- 407

trieving contexts with overlapping n-grams,6 which 408

could motivate simpler and faster retrieval func- 409

tions. On the other hand, the cases in which n-gram 410

overlap does not play a major role require further 411

analysis. 412

6 Behavior of Adaptive Coefficient 413

In §3, we inspect cases to understand when kNN- 414

LM is most effective compared to the base lan- 415

guage model. In this section, we instead analyze 416

the behavior of our new formulation that uses an 417

adaptive coefficient, with the goal of understanding 418

its relative performance compared to the original 419

kNN-LM. 420

6.1 How to define partition boundaries? 421

In §3.1 we establish that kNN-LM performs simi- 422

larly per bucket when partition boundaries are es- 423

tablished through latent vectors or bag-of-words 424

6As others have previously noted, Wikitext-103 contains
considerable amounts of duplicate text (McCoy et al., 2021).
Deduplicating the training data can be helpful for language
modeling (Lee et al., 2022; Kandpal et al., 2022), and some-
times other tasks (Schofield et al., 2017), but we completely
remove text that overlaps with the evaluation data.
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representation. The question is, does this also hold425

when using an adaptive coefficient? We tune the426

adaptive coefficient using different values of k and427

report the results for Wikitext-103 in Table 4.428

In general, we find that both the dense learned429

vectors and TFIDF bag-of-word vectors work sim-430

ilarly well for establishing partition boundaries.431

For the best setting, when k = 1024, the learned432

vectors work better, reflecting recent findings that433

dense vectors outperform sparse representations434

for various retrieval-related tasks (Lee et al., 2019).435

Hence, throughout this paper we use the adaptive436

coefficient with learned vectors and k = 1024 un-437

less otherwise specified. Interestingly, for lower438

values of k the bag-of-words representation has an439

edge over the learned vectors. If there is a budget440

on how many items can be retrieved, then it can be441

especially helpful to use our adaptive coefficient442

with partition boundaries from TFIDF rather than443

the original kNN-LM.444

6.2 Does the adaptive coefficient bolster the445

trends from kNN-LM?446

We repeat the syntactic analysis from §3.3 using447

our adaptive coefficient and include PG-19 as an448

additional dataset.7 The corresponding plots are449

shown in Figure 5.450

For the base language model, the relative per-451

plexity in each syntactic bucket is similar between452

Wikitext-103 and PG-19. The relative perplexity of453

kNN-LM is mostly similar in each dataset, except454

for two important categories, adjective (ADJ) and455

verb (VERB), which kNN-LM helps with more for456

Wikitext-103 than PG-19.457

For Wikitext-103, our adaptive coefficient is uni-458

versally helpful across all syntactic categories. This459

behavior changes for PG-19. The adaptive coef-460

ficient is more helpful than static coefficient for461

most categories, but has negligible impact on ADP,462

PRON, and PUNCT. This is surprising as PRON463

is a category where kNN-LM gives an outsized464

improvement on Wikitext-103. Although there465

are categories where the adaptive coefficient hurts466

(CCONJ and DET), this is outweighed by the im-467

provement on ADJ and VERB. As previously men-468

tioned, ADJ and VERB are more challenging for469

kNN-LM on PG-19 than Wikitext-103, so the bene-470

fit provided by the adaptive coefficient is appealing.471

7We only include the first 500K tokens from PG-19 val-
idation data, as this is already more than twice the size of
Wikitext-103 validation data.
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Figure 5: Perplexity of the base language model (top),
grouped by part-of-speech. Relative perplexity improve-
ment by kNN-LM approches on Wikitext-103 (center)
and PG-19 (bottom). The lines corresponding kNN-LM
match Figure 3 — they are included here to emphasize
the difference to our new formulation.

6.3 Is the adaptive coefficient helpful without 472

highly relevant items in the datastore? 473

As we established in §3.2, the lexical overlap be- 474

tween a query and a retrieved context is a reason- 475

able proxy for relevance. In Table 1, we report the 476

perplexity of our adaptive coefficient when remov- 477

ing large n-grams from the datastore that overlap 478

with the evaluation data. With these highly rele- 479

vant contexts removed, we observe that the kNN- 480

LM shows substantially worse test perplexity on 481

Wikitext-103, 18.05 instead of 16.12. On the con- 482

trary, for PG-19 the change in perplexity is minimal. 483

This suggests that kNN-LM can be helpful even 484

when there are not large overlapping n-grams be- 485

tween the datastore and evaluation corpus — such 486

cases occur frequently in PG-19, and we visualize 487

these in Table 5. 488

The benefit from the adaptive coefficient is also 489

substantially diminished for Wikitext-103, but less 490
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Book Context r

The Unbearable Bassington, Saki (1912) My dear Francesca , he said soothingly , laying his hand affectionately q

FLORA, A.L.O.E. (1860) My dear madam , said Mr. Ward earnestly , laying his hand on 1
Peter, Smith (1908) this young man ’s uncle , said Peter , laying his hand affectionately 11

Life of Napoleon Bonaparte, Sloane (1896) during the worst periods of terror , were thronged from pit to gallery q

Sketches of Reforms—, Stanton (1849) For weeks , that theater was crowded from pit to dome 1
Farquharson of Glune, Bateman (1908) The storm of feeling swept alike from stall to gallery 6

Walking, Thoreau (1851) like a dream of the Middle Ages . I floated down its historic stream q

The Automobilist Abroad, Mansfield (1907) France is a pleasure , a voyage up a picturesque and historic French 1
Canadian Notabilities, Dent (1880) two small sailing craft slowly making their way up the majestic stream 42

Table 5: Examples from PG-19 where relevant contexts are found even with large n-grams removed from the
datastore. There can be overlap in small n-grams (top), local structure (center), or semantics (bottom). The contexts
are shown with their corresponding book. Rank (r) is shown except for queries (q). Values are bolded or italicized.

so for PG-19. This suggests that the partitions cap-491

ture similarity akin to lexical overlap for Wikitext-492

103, but perhaps encode other properties, such as493

semantic similarity, for PG-19. Alternatively, it494

could be that short n-grams are helpful in Wikitext-495

103, despite Khandelwal et al. (2020) reporting496

that interpolating the base language model with an497

n-gram model was not very effective.498

It is worth noting that even with the relevant499

items removed from the datastore, the adaptive500

coefficient is robust and provides just as good per-501

formance as the original kNN-LM. While kNN-502

LM does not provide as much of a benefit, it still503

improves over the base language model. These504

findings suggest alternative definitions of partition505

boundaries may be worth exploring besides those506

derived from learned vector distance or TFIDF.507

7 Related Work508

Our adaptive coefficient improves perplexity on the509

language modeling task without additional training.510

In contrast, several works extend kNN-LM with511

a tradeoff between task performance and speed.512

These techniques include conditioning retrieval on513

previously retrieved documents (Alon et al., 2022),514

dimensionality reduction of the datastore (He et al.,515

2021), or retrieving phrases instead of single to-516

kens (Martins et al., 2022). In similar spirit, Zheng517

et al. (2021) train a separate component to pre-518

dict k based on the input and retrieved items — in519

our case, we did not find any benefit to tuning k520

separately for each bucket. Other extensions in-521

ject document categories (Xu et al., 2022) or add522

retrieval-specific model layers (Meng et al., 2022),523

and are not directly comparable with our results.524

Researchers have explored fundamental exten-525

sions to kNN that are agnostic to language data. 526

Wettschereck and Dietterich (1993) spatially parti- 527

tion the datastore, adapting the value of k for each 528

region. Keeping k fixed, Hastie and Tibshirani 529

(1995) instead adapt the shape of the neighborhood 530

based on local information. 531

There are many recent works that use retrieval 532

components for language tasks besides next word 533

prediction, such as question answering (Godbole 534

et al., 2019; Guu et al., 2020; Kassner and Schütze, 535

2020), dialogue generation (Fan et al., 2021), con- 536

versational search (Hashemi et al., 2020), semantic 537

parsing (Gupta et al., 2021), and data augmentation 538

(Du et al., 2021). The kNN-MT used for machine 539

translation (Khandelwal et al., 2021) is an exten- 540

sion of kNN-LM for conditional text generation — 541

it adds a new hyperparameter T to control softmax 542

temperature in the interpolated probability. 543

8 Conclusion 544

In this paper, we have proposed a novel and ef- 545

fective re-formulation of the kNN-LM. Our ap- 546

proach uses an adaptive interpolation coefficient 547

conditioned on the query and retrieved documents 548

— queries that retrieve at least one highly similar 549

item assign a higher weight to the kNN probabil- 550

ity. Although this adds many new hyperparameters 551

to tune, the additional computational cost is negli- 552

gible. Our analysis supports the intuition behind 553

the adaptive coefficient and provides insights on 554

which types of tokens kNN-LM is most helpful 555

for. Importantly, our experimental results verify 556

the effectiveness of our new method, which pro- 557

vides nearly 4% improvement in test perplexity on 558

the Wikitext-103 language modeling corpus. 559
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Limitations560

The kNN-LM leverages a datastore, and when pop-561

ulated with text relevant for the task domain, can be562

used to improve language modeling performance.563

The benefits of this procedure are data dependent564

and domain-specific, and the same applies to the565

adaptive coefficient technique that we introduce.566

The adaptive coefficient requires many more tun-567

able hyperparameters. To address this, we release568

an optimized codebase to perform this hyperpa-569

rameter search in neglible time compared with the570

original kNN-LM.571

Ethical Concerns and Impact572

Even when used with the best intentions language573

models can produce malicious or harmful text, and574

guards are typically used to account for inherent575

bias or undesirable output. In our case, we do not576

generate text and simply use the model to evalu-577

ate perplexity on existing data, so effectiveness of578

safety guards and their limitations is not a relevant579

concern in this work.580
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