You can’t pick your neighbors, or can you?
When and how to rely on retrieval in the ANN-LM

Anonymous ACL submission

Abstract

Retrieval-augmented language models (LMs),
which condition their predictions on text re-
trieved from large external datastores, have re-
cently shown significant perplexity improve-
ments compared to standard LMs. One such
approach, the kNN-LM, interpolates any ex-
isting LM’s predictions with the output of a
k-nearest neighbors model and requires no ad-
ditional training. In this paper, we explore the
importance of lexical matching and vector sim-
ilarity in the context of items retrieved by KNN-
LM. We find two trends: (1) the presence of
large overlapping n-grams between the datas-
tore and evaluation set plays an important factor
in strong performance, even when the datas-
tore is derived from the training data; and (2)
kNN-LM is more effective on average when
the top retrieved items have high vector similar-
ity with the query. Based on our analysis, we
define a new formulation of the kNN-LM that
uses an adaptive interpolation coefficient rather
than a static value for all queries. We measure
empirically the effectiveness of our approach
on two English language modeling datasets,
Wikitext-103 and PG-19. Our re-formulation
of the kNN-LM is beneficial in both cases, and
leads to nearly 4% improvement in perplexity
on the Wikitext-103 test set.

1 Introduction

Recently, a new class of language models (LMs)
that are augmented with retrieval capabilities have
led to substantial improvements over standard neu-
ral LMs (Lewis et al., 2020; He et al., 2020; Yo-
gatama et al., 2021; Borgeaud et al., 2021; Wu
et al., 2022; Thoppilan et al., 2022, inter alia). Fur-
thermore, LMs with retrieval warrant investigation
as they provide benefits for many tasks (Zamani
et al., 2022). These approaches generally involve a
backbone neural LM that interacts with a retrieval
component of varying complexity to find relevant
documents. In this work, we analyze and improve
a specific and simple type of retrieval-augmented

Retrieved Contexts with Values Dist.

Obama was a senator for lllinois 4 P
Obama is married to Michelle | | 99

Obama is a native of Hawaii 3

Evaluation Context

Obama’s birthplace is Pris;1G) =NPyn(w;1) + (1 =N)P(w; 1 q)

Figure 1: We present an extension to KNN-LM that
conditions the interpolation coefficient (\) on the vector
distance of retrieved contexts.

language model, the KNN-LM originally proposed
by Khandelwal et al. (2020).

The kNN-LM is non-parametric — it works by
retrieving instances from an external datastore at
each decoding timestep, and it improves language
model performance without requiring additional
training. In essence, the kNN-LM interpolates
a base LM’s predicted probability distribution of
the next word with a distribution formed by re-
trieving vectors similar to the current hidden state.
kNN-LM includes two tunable hyperparameters:
the number of items to retrieve (k) and an interpo-
lation coefficient (\). The method’s effectiveness
depends crucially on source and size of the retrieval
datastore: it is most effective when using a very
large datastore with orders of magnitude more to-
kens than seen in the training corpus, but Khandel-
wal et al. (2020) also observe improvements with
smaller datastores.

Modern neural models have massive capacity to
memorize their training data (Zhang et al., 2017).
Nonetheless, simply using an LM’s training corpus
as the source for the datastore works well for KNN-
LM, as test perplexity on the Wikitext-103 dataset
decreases substantially from 18.65 to 16.12. How-
ever, it remains unclear how and why the KNN-LM
achieves these improvements. Which types of to-
kens and contexts does it improve most on? In §3,
we analyze the kKNN-LM’s behavior with respect
to parts of speech, vector distance between context

and retrievals, and lexical overlap.

Our analysis reveals the syntactic categories
kNN-LM is most helpful with (e.g. proper nouns),
that low vector distance between query and context
vectors correlates with kNN-LM improvements
over the base language model, and that the £NN-
LM is sensitive to lexical patterns (albeit the degree
of sensitivity is domain specific). Next, we leverage
our knowledge of when the KNN-LM helps to de-
velop an improved reformulation. In particular, we
develop a simple yet effective modification of the
ENN-LM that employs an adaptive interpolation
coefficient instead of a static one as in the original
method. Our method chooses this coefficient (\)
conditioned on the query and its retrieved items
(see Figure 1). While it introduces new hyperpa-
rameters, we show that the additional hyperparam-
eter tuning comes at negligible cost. Importantly,
our empirical results demonstrate that our newly
introduced reformulation of KNN-LM is beneficial
for both encylopedic text and book data, and leads
to an improvement of nearly 4% perplexity over
the the vanilla KNN-LM, measured on the English
language modeling Wikitext-103 test set. Broadly,
we hope that our insights and methods can help fa-
cilitate future development of retrieval-augmented
LMs.

2 Language Modeling with ZNN-LM

The KNN-LM improves over a base language
model by explicitly memorizing the LM’s train-
ing data. It stores exact sentences from the training
data in its datastore that can be accessed during
language model inference to produce a k-nearest
neighbor next word distribution that is interpolated
with the base model’s prediction. Interpolation is
preferred for similar reasons as approximate ma-
trix factorization in collaborative filtering — the
universe of text patterns is sparse and lossless com-
pression of the training data alone is not sufficient
to model new patterns. In this section, we explain
the specifics of the kNN-LM’s inner workings in
order to guide our analysis.

2.1 General Approach

The KNN-LM (Khandelwal et al., 2020) is a lan-
guage model with a retrieval component. Like
all language models, it predicts the the word at
time step ¢ conditioned on the history of words:
P(w¢|wg, w1, ..., wi—1). Neural language mod-
els encode the history of words using a vector h:

P(w¢|hi—1). What makes the k\NN-LM novel is
that it uses a pre-trained language model to en-
code a collection of documents, and then retrieves
documents from this collection based on vector
similarity in order to improve its next word predic-
tion. Notably, the retrieval is completely latent —
no supervised ranking information is used and doc-
uments are simply retrieved using vector similarity.

The kKNN-LM follows a particular way of encod-
ing the collection of documents into a datastore.
Consider document x; consisting of n words. The
kNN-LM encodes the first n — 1 words as a vector
and this becomes the key of document z;, referred
to as k;. The n-th word is saved as the value v;. In
practice, and since KNN-LM is used for language
modeling, a sequence with n words is recorded as
n—1 documents: for any ¢ < n, a document whose
key is words w; to w;_1 and value is w; is built.

After the datastore is built, the kKNN-LM is eval-
uated on a dataset with m words, predicting words
from left-to-right. Retrieval in KNN-LM is done
by measuring Euclidean distance d(.,.) between
vector encodings of the query g; (corresponding to
the context of the j-th word in the evaluation data)
and the keys in the datastore. The values from re-
trieved documents define a new distribution of the
next word:

Prenn(we|ge) o Z Lo, —v; exp(—d(ks, qt))
(kisvi)

D

The best performance typically involves mixing
the original and kNN-based word distributions us-
ing a tunable hyperparameter \:

Priz(wi|qr) = AP v (welge) + (1 — X)P(we|qe)
()

3 Analysis: When is ANN-LM effective?

In the original kNN-LM work, the authors point
out that the model generally helps for rare patterns,
factual knowledge, and names (Khandelwal et al.,
2020). These observations are primarily qualita-
tive and anecdotal. In this section we perform au-
tomated analysis to more specifically understand
when kNN-LM is beneficial, with the aim to un-
cover systematic behavior that can be leveraged to
extend KNN-LM and improve its effectiveness at
next word prediction.

—— Vector Distance
TFIDF Distance

e o o o
W P
)

(Compared to Base LM)

Relative PPL Improvement
o
.

o
I=}
!

vvvvvvvvvvvvvvvvvvvv
ORI DD DD RO RPEEA S DS P

Vector Distance Bucket (Increments of 5)

Figure 2: Relative perplexity improvement of kNN-
LM compared to the base language model measured
on the Wikitext-103 validation set. Query contexts are
bucketed by vector distance of the closest retrieved item.

3.1 Distance between Latent Vectors

The kKNN-LM encodes the context into a fixed-
length query vector and uses this to retrieve similar
contexts from the datastore. Not every retrieved
context will have a key whose associated value
matches the ground-truth next word, and a priori,
it is difficult to know when a retrieved context is
helpful. Nonetheless, KNN-LM is typically helpful
when at least 1 of the retrieved keys corresponds to
the true next word.

Figure 2 examines this intuition a posteriori on
the Wikitext-103 validation set. First, we bucket
query contexts according to the vector distance
of their top retrieved item. The buckets are non-
overlapping and each contain 5% of the query con-
texts — the first contains the 5% of queries that
have lowest vector distance with their top retrieved
item, the next contains the next 5% lowest, and so
on. Plotted in the figure is the relative perplexity
improvement of kNN-LM compared to the base
language model. It becomes obvious that the buck-
ets with lower vector distance are the ones where
kNN-LM is more beneficial, supporting the hypoth-
esis that vector distance is a proxy for relevance.

3.2 Lexical Overlap

Another possible proxy for relevance is lexical over-
lap. Rather than directly using neural network hid-
den representations to form buckets, we first con-
vert contexts into TFIDF vectors (using 32-token
trailing window), which are a popular and effective
bag-of-words representation (Chen et al., 2017).
We use these representations to measure vector dis-
tance solely for bucketing (retrieval is still done
using the kNN-LM’s neural representations). The
relative perplexity for this setting is reported in
Figure 2, and aligns well with the bucketing re-

‘ Dev ‘DCV—S‘ Test ‘Test—S

Wikitext
BaseLM | 17.96 | 17.96 | 18.65 | 18.65
ENN-LM | 16.06 | 17.28 | 16.12 | 18.05
Ours | 15.72 | 17.26 | 15.50 | 18.03

PG-19
BaseLM | 60.83 | 60.83 | 50.95 | 50.95
KNN-LM | 52.49 | 53.34 | 43.93 | 44.97
Ours | 52.08 | 53.06 | 43.58 | 44.78

Table 1: Perplexity on Wikitext-103 and PG-19 datasets.
Dev-8 and Test-8 contain the same data as Dev and Test,
but overlapping n-grams (n > 8) with the evaluation
data have been removed from the KXNN-LM datastore.
The adaptive coefficient (Ours) is described in §4.

ported in the previous subsection. This suggests
that kKNN-LM is beneficial when the current con-
text has high lexical overlap with a context saved
in the datastore.

To further examine the relationship between
kNN-LM performance and lexical overlap between
contexts, we rebuild the index that KNN-LM uses to
retrieve items in a way to minimize lexical overlap.
We run the base language model over the training
corpus, but ignore tokens that correspond to large
overlapping n-grams (n > 8) with the evaluation
data.! The Wikitext-103 perplexity for kNN-LM
compared to the base language model using the
original and restricted datastore is shown in Ta-
ble 1. Trend-wise, the kNN-LM works better when
there is high lexical overlap between query and its
retrieved contexts, but when large overlapping n-
grams are removed from the datastore, the benefit
of the kNN-LM substantially diminishes.

3.3 Part-of-Speech Tags

Another lens, syntax, can shed light on KNN-LM
performance outside of document relevance. To
further understand which types of words benefit
most from kKNN-LM, we group tokens by their
part-of-speech. Then we compute validation per-
plexity separately for each group using both the
base language model and the K NN-LM. To get part-
of-speech tags, we segment the data into sentences
and label words using the tagger from Stanza® with
the universal dependencies output space. We in-

'To ensure the n-gram context does not leak into the data-
store, we follow Brown et al. (2020) and ignore tokens corre-

sponding to a 200-token window centered around the n-gram.
Zhttps://stanfordnlp.github.io/stanza/

https://stanfordnlp.github.io/stanza/

1024 @

Perplexity (PPL)

L]
T T T T T T T T T T
F N S E S SR
(/(5’ DO X & QQ_O QQ$ ()}(,0 &

Part of Speech

(Compared to Base LM)

Relative PPL Improvement

S
O L 9
& &

T T

s &£ 2

S & &
& & &

T T T T T
AR &
W & Oé §O° ¥ Q

Part of Speech

Figure 3: Perplexity of the base language model grouped
by part-of-speech (top), and relative improvement of the
kNN-LM (bottom).

clude categories with frequency greater than 1K in
the Wikitext-103 validation data.

The results are included in Figure 3. We find that
kNN-LM is most helpful for syntactic categories
where the base language model most struggles,
e.g. the original perplexity for adjectives (ADJ)
is 105.37 and the KNN-LM improves perplexity by
16.3% for this category. The five other categories
that had worst perplexity (ADV, NOUN, NUM,
PROPN, VERB) are also where kKNN-LM works
best. It’s satisfying to see proper noun (PROPN)
included here, as it reflects intuition of kANN-LM
assisting with factual knowledge.

4 A New Formulation for ANN-LM

In the previous section, we analysed when kNN-
LM is most helpful. We use this information to
design a new formulation of KNN-LM that can ex-
ploit this behavior. The original kKNN-LM uses the
same interpolation coefficient (\) for every exam-
ple, which may not be desirable. As our analysis
reveals, we can predict when the kNN-LM is most
beneficial, which naturally leads us to a new for-
mulation with an adaptive \:

Pria(wil-) = APrevn(wel-) + (1= Ag) Plw].)

3)

where)\, is a function of the query and its retrieved
documents rather than constant for all queries.

e o o
N o ©
| s

© [

o
o
L

Coefficient (Aq)
o
w
1

=} =]
w EN

I

[

0 20 40 60 80 100

Distance Percentile

Figure 4: Sets of coefficients ()\,) tuned on the Wikitext
validation set for different bucket sizes (1, 2, 8, 32). The
buckets are balanced.

Using the same A for all examples is limiting
— it does not effectively leverage retrieval when
neighboring keys are clearly relevant (like shown
in Figure 1), nor does it trust the base language
model when retrieved items are dissimilar from the
query context. Of course, the critical decision here
is how to define partitions. One option that we ex-
plore is the “Distance Percentile” (measured with
“minimum vector distance”) covered in the previous
section. If we partition the data into two balanced
buckets, we would define the first bucket as queries
with “minimum vector distance” within the [0, 50]
percentile range and the second bucket including
those in the (50, 100] range. For each bucket we
perform the same hyperparameter search over coef-
ficients as in kNN-LM.? Sets of coefficients using
different bucket sizes and tuned for Wikitext-103
are shown in Figure 4.

S Experiments and Results

To evaluate the effectiveness of our new formula-
tion of kNN-LM we measure perplexity on two
English language modeling datasets. The first is
the Wikitext-103 corpus (Merity et al., 2016) used
by Khandelwal et al. (2020). The second is PG-19
(Rae et al., 2020), which we include because it con-
sists of books and is thematically distinct from the
encyclopedic documents in Wikitext-103.

The target baseline we aim to improve on is the
original formulation of KNN-LM. As described in
§2.1, the datastore is built by encoding a large text
corpus, in this case the training set. The kNN-LM
is already a substantial improvement over the back-
bone language model (Baevski and Auli, 2019).

3See Khandelwal et al. 2020 Figure 5.

b‘ Devg ‘ Dev; ‘ Dev

17.091 | 14.989 | 16.091
16.909 | 14.854 | 15.933
16.763 | 14.767 | 15.815
16.665 | 14.727 | 15.743
16| 16.637 | 14.722 | 15.727
32116.629 | 14.722 | 15.721
64| 16.622 | 14.724 | 15.719
128 | 16.619 | 14.724 | 15.715

AN O B~ DN =

Table 2: Validation perplexity on Wikitext-103. Used
for hyperparameter tuning.

By using an adaptive interpolation coefficient we
improve the performance even further.

5.1 Experimental Setup and Pre-processing

Wikitext-103 The data is split 103M/217K/245K
tokens for training, validation, and test. The vocab-
ulary is at the word-level and includes 267K tokens.
We use the already trained model from Khandelwal
et al. (2020).

PG-19 To understand when the adaptive coeffi-
cient is desirable compared with a static coefficient,
we include PG-19 in our experiments. PG-19 con-
sists of books and is thematically distinct form
the encyclopedic douments in the Wikitext-103
data. We sample 2,000 books from the training
corpus, which gives approximately 150M tokens
and is close in size to Wikitext-103. We use the
standard validation split (50 books) and test split
(100 books). We use word-level tokenization with
a 300K vocabulary derived from our constructed
training split. We train our own model using the
same architecture and hyperparameters from Khan-
delwal et al. (2020).

5.2 Tuning ANN-LM Hyperparameters

For the original formulation of KNN-LM there are
two hyperparameters to tune: the number of items
to retrieve (k) and the interpolation coefficient ().
These are tuned on the validation set. We intro-
duce an important hyperparameter for the number
of buckets to use (b)* and tune a new interpolation
coefficient (\,) separately for each bucket. Since
each bucket is assigned its own coefficient, the total

“The number of buckets divides the data evenly, and each
is associated with partition boundaries. The queries with a
minimum vector distance greater than the lower boundary and
less than the upper boundary are included in the bucket.

number of hyperparameters grows with the num-
ber of buckets. Even so, hyperparameter tuning is
only required for the validation data and we cache
expensive computation so that the cost of hyperpa-
rameter search is negligible (see §5.2.1 for more
details).

To select the number of buckets (b), we use the
first half of the validation data (Devy) to define par-
tition boundaries, and find the best performing in-
terpolation coefficient for each partition separately.
Then we measure perplexity on the second half
of the validation data (Dev;) using those partition
boundaries and coefficients. The choice of b that
gives the best perplexity on Dev; is the one we ulti-
mately use. With b chosen, we then re-compute the
partition boundaries and corresponding coefficients
using the full validation data (Dev), which will be
used to evaluate against the test data.

An example of tuning for b on Wikitext-103 is
shown in Table 2. On Devy, increasing b always
leads to better perplexity, albeit with diminishing
returns. On the held-out data (Dev;), since the
partition boundaries and coefficients are chosen
using Devy, it is not guaranteed that increasing b
improves perplexity. Similarly, tuning the partition
boundaries and coefficients on the validation data
does not guarantee improvement on the test data.
Even so, empirically we find that our adaptive co-
efficient is always at least as effective as the static
coefficient.

5.2.1 Computational Cost of Tuning

Using the adaptive coefficient, the number of hy-
perparameters scales with the size of b and is more
than order of magnitude more than what is used
for kNN-LM. That said, by effectively caching
query vectors, retrieved items, and associated vec-
tor distances the cost associated with hyperparame-
ter search is negligible. The initial time to compute
these values takes hours and is the same as with
kNN-LM, but after computed it takes less than 5
minutes to perform the hyperparameter search for
the adaptive coefficient on the Wikitext-103 data.’
We release our implementation with value caching
on github: github.com/anonymous/submit.

5.3 Perplexity on WikiText-103

Table 3 reports the perplexity from our approach
and various baselines on the Wikitext-103 valida-
tion and test sets. Our approach scores 15.50 per-

S All experiments are run on a single Titan X GPU with
256GB CPU memory.

https://github.com/anonymous/submit

‘)\‘b‘ k ‘DeV‘Test

Base LM - - - 17.96 | 18.65
kENN-LM 025] 1 1024 |16.06|16.12
+CCache 025 1 |1024|15.8115.79
Ours (TFIDF) | A\, [32]1024|15.76 | 15.54
Ours Ag |32]1024]15.72|15.50

Table 3: Test and validation perplexity on Wikitext-103.
This is our main result and demonstrates that our new
formulation with adaptive coefficient ();) substantially
improves over kNN-LM.

plexity on the test set. This is a 16.9% improvement
over the base language model and a 3.8% improve-
ment over the original KNN-LM formulation.

For the number of buckets (b) we found 32 to
work best (see Table 2), and the set of coefficients
are the same as shown in Figure 4. Our search
space includes b € {1,2,4,8,16, 32,64, 128} and
Aq € {0.05,0.1,0.15,...,0.9,0.95}.

Khandelwal et al. (2020) find that retrieving from
recent history using the continuous cache model
(CCache; Grave et al. 2017) is complementary to
retrieving from the datastore, improving perplex-
ity when combined with kNN-LM. This type of
caching is out of scope of this paper, and our ap-
proach already outperforms the combined model.

5.4 Perplexity on PG-19

To further understand how lexical overlap influ-
ences kNN-LM performance we evaluate using the
PG-19 dataset. Compared to Wikipedia, text across
books has much less repetition, so text retrieved
from the datastore is less likely to overlap with
n-grams in the evaluation data.

We train our own model using the same architec-
ture and hyperparams for Wikitext-103, and report
perplexity in Table 1. We found b = 32 works best.
Despite the challenging properties of the book data,
kNN-LM is still effective. Our re-formulation is
marginally beneficial here.

5.5 Filtering n-grams from the Datastore

Our analysis thus far indicates that lexical overlap
is important for strong kNN-LM performance. To
test this directly for the adaptive coefficient, we
follow the procedure described in §3.2 rebuild the
datastore but remove from the index large n-grams
(n > 8) and their surrounding tokens that also
appear in the evaluation data.

‘ A ‘ b ‘ k ‘ Dev
Dense | 0.25 1]1024|16.06
Dense | A 3211024 | 15.72
TFIDF | A, 3211024 | 15.76
Dense | 0.05 1 1/17.10
Dense |0.15 1 8116.66
Dense | 0.25 1 64 |16.31
Dense | A, | 16 1{16.63
Dense | A, | 128 8116.19
Dense | A\, | 16| 64|15.90
TFIDF | A, 32 1]16.38
TFIDF | A, 64 8116.06
TFIDF |), 16 64 | 15.87

Table 4: Validation perplexity on Wikitext-103 used
for ablation analysis. The KNN-LM uses a single static
value for the interpolation coefficient (\), our method
uses an adaptive coefficient ()\;). This table includes
our approach when using the learned vector distance
(Dense) or bag-of-words representation (TFIDF). Based
on how many items are retrieved (k), our approach
works best with a different amount of buckets (b).

The results for this experiment on both Wikitext-
103 and PG-19 are shown in Table 1. Most of kKNN-
LM’s improvements on Wikitext-103 come from re-
trieving contexts with overlapping n-grams,® which
could motivate simpler and faster retrieval func-
tions. On the other hand, the cases in which n-gram
overlap does not play a major role require further
analysis.

6 Behavior of Adaptive Coefficient

In §3, we inspect cases to understand when kNN-
LM is most effective compared to the base lan-
guage model. In this section, we instead analyze
the behavior of our new formulation that uses an
adaptive coefficient, with the goal of understanding
its relative performance compared to the original
kNN-LM.

6.1 How to define partition boundaries?

In §3.1 we establish that KNN-LM performs simi-
larly per bucket when partition boundaries are es-
tablished through latent vectors or bag-of-words

®As others have previously noted, Wikitext-103 contains
considerable amounts of duplicate text (McCoy et al., 2021).
Deduplicating the training data can be helpful for language
modeling (Lee et al., 2022; Kandpal et al., 2022), and some-
times other tasks (Schofield et al., 2017), but we completely
remove text that overlaps with the evaluation data.

representation. The question is, does this also hold
when using an adaptive coefficient? We tune the
adaptive coefficient using different values of k and
report the results for Wikitext-103 in Table 4.

In general, we find that both the dense learned
vectors and TFIDF bag-of-word vectors work sim-
ilarly well for establishing partition boundaries.
For the best setting, when & = 1024, the learned
vectors work better, reflecting recent findings that
dense vectors outperform sparse representations
for various retrieval-related tasks (Lee et al., 2019).
Hence, throughout this paper we use the adaptive
coefficient with learned vectors and £ = 1024 un-
less otherwise specified. Interestingly, for lower
values of k the bag-of-words representation has an
edge over the learned vectors. If there is a budget
on how many items can be retrieved, then it can be
especially helpful to use our adaptive coefficient
with partition boundaries from TFIDF rather than
the original KNN-LM.

6.2 Does the adaptive coefficient bolster the
trends from ANN-LM?

We repeat the syntactic analysis from §3.3 using
our adaptive coefficient and include PG-19 as an
additional dataset.” The corresponding plots are
shown in Figure 5.

For the base language model, the relative per-
plexity in each syntactic bucket is similar between
Wikitext-103 and PG-19. The relative perplexity of
kNN-LM is mostly similar in each dataset, except
for two important categories, adjective (ADJ) and
verb (VERB), which KNN-LM helps with more for
Wikitext-103 than PG-19.

For Wikitext-103, our adaptive coefficient is uni-
versally helpful across all syntactic categories. This
behavior changes for PG-19. The adaptive coef-
ficient is more helpful than static coefficient for
most categories, but has negligible impact on ADP,
PRON, and PUNCT. This is surprising as PRON
is a category where kNN-LM gives an outsized
improvement on Wikitext-103. Although there
are categories where the adaptive coefficient hurts
(CCONIJ and DET), this is outweighed by the im-
provement on ADJ and VERB. As previously men-
tioned, ADJ and VERB are more challenging for
kNN-LM on PG-19 than Wikitext-103, so the bene-
fit provided by the adaptive coefficient is appealing.

"We only include the first 500K tokens from PG-19 val-
idation data, as this is already more than twice the size of
Wikitext-103 validation data.

=
15
ES

X Base LM (Wikitext-103)
Base LM (PG-19)

,_.
i
N

i
B
X
X
X

Perplexity (PPL)

X X X

-
<

X x X

X X
L
&

"
AN @
& &

1

X
F L& & &
® é,o Qf QAR & qu S

Part of Speech

Wikitext-103

o
N
«

X KNN-LM
Ours

o o o

= = N

o o S

L L !
X

o
=)
@
L
X

Relative PPL Improvement
(Compared to Base LM)
X

o
=}
S

— S A
S ST NE ST E S SESE
¥ L ® 0(,0 S & & Q‘}o Q@ 5 &

Part of Speech

PG-19
0.25
2 X KNN-LM
1S] 0.20 4 Ours
29 %
o X
50 0.15 9 X o X
Eg
-} A
T 90101
v é X X
£5005{ X
< X
o
o0t v- 4+
> & SN & & & & NN S X Y
LR S R I S & q&s‘/ S ¢

Part of Speech

Figure 5: Perplexity of the base language model (top),
grouped by part-of-speech. Relative perplexity improve-
ment by kNN-LM approches on Wikitext-103 (center)
and PG-19 (bottom). The lines corresponding kNN-LM
match Figure 3 — they are included here to emphasize
the difference to our new formulation.

6.3 Is the adaptive coefficient helpful without
highly relevant items in the datastore?

As we established in §3.2, the lexical overlap be-
tween a query and a retrieved context is a reason-
able proxy for relevance. In Table 1, we report the
perplexity of our adaptive coefficient when remov-
ing large n-grams from the datastore that overlap
with the evaluation data. With these highly rele-
vant contexts removed, we observe that the kNN-
LM shows substantially worse test perplexity on
Wikitext-103, 18.05 instead of 16.12. On the con-
trary, for PG-19 the change in perplexity is minimal.
This suggests that kNN-LM can be helpful even
when there are not large overlapping n-grams be-
tween the datastore and evaluation corpus — such
cases occur frequently in PG-19, and we visualize
these in Table 5.

The benefit from the adaptive coefficient is also
substantially diminished for Wikitext-103, but less

Book Context

r

The Unbearable Bassington, Saki (1912)

My dear Francesca , he said soothingly , laying his hand affectionately ¢

FLORA, A.L.O.E. (1860)
Peter, Smith (1908)

My dear madam , said Mr. Ward earnestly , laying his hand on 1
this young man ’s uncle , said Peter , laying his hand affectionately 11

Life of Napoleon Bonaparte, Sloane (1896) during the worst periods of terror , were thronged from pit to gallery q
Sketches of Reforms—, Stanton (1849) For weeks , that theater was crowded from pit to dome 1
Farquharson of Glune, Bateman (1908) The storm of feeling swept alike from stall to gallery 6
Walking, Thoreau (1851) like a dream of the Middle Ages . I floated down its historic stream q
The Automobilist Abroad, Mansfield (1907) France is a pleasure , a voyage up a picturesque and historic French 1

Canadian Notabilities, Dent (1880)

two small sailing craft slowly making their way up the majestic stream 42

Table 5: Examples from PG-19 where relevant contexts are found even with large n-grams removed from the
datastore. There can be overlap in small n-grams (top), local structure (center), or semantics (bottom). The contexts
are shown with their corresponding book. Rank (r) is shown except for queries (g). Values are bolded or italicized.

so for PG-19. This suggests that the partitions cap-
ture similarity akin to lexical overlap for Wikitext-
103, but perhaps encode other properties, such as
semantic similarity, for PG-19. Alternatively, it
could be that short n-grams are helpful in Wikitext-
103, despite Khandelwal et al. (2020) reporting
that interpolating the base language model with an
n-gram model was not very effective.

It is worth noting that even with the relevant
items removed from the datastore, the adaptive
coefficient is robust and provides just as good per-
formance as the original kNN-LM. While kNN-
LM does not provide as much of a benefit, it still
improves over the base language model. These
findings suggest alternative definitions of partition
boundaries may be worth exploring besides those
derived from learned vector distance or TFIDF.

7 Related Work

Our adaptive coefficient improves perplexity on the
language modeling task without additional training.
In contrast, several works extend KNN-LM with
a tradeoff between task performance and speed.
These techniques include conditioning retrieval on
previously retrieved documents (Alon et al., 2022),
dimensionality reduction of the datastore (He et al.,
2021), or retrieving phrases instead of single to-
kens (Martins et al., 2022). In similar spirit, Zheng
et al. (2021) train a separate component to pre-
dict k£ based on the input and retrieved items — in
our case, we did not find any benefit to tuning &
separately for each bucket. Other extensions in-
ject document categories (Xu et al., 2022) or add
retrieval-specific model layers (Meng et al., 2022),
and are not directly comparable with our results.
Researchers have explored fundamental exten-

sions to kNN that are agnostic to language data.
Wettschereck and Dietterich (1993) spatially parti-
tion the datastore, adapting the value of & for each
region. Keeping k fixed, Hastie and Tibshirani
(1995) instead adapt the shape of the neighborhood
based on local information.

There are many recent works that use retrieval
components for language tasks besides next word
prediction, such as question answering (Godbole
et al., 2019; Guu et al., 2020; Kassner and Schiitze,
2020), dialogue generation (Fan et al., 2021), con-
versational search (Hashemi et al., 2020), semantic
parsing (Gupta et al., 2021), and data augmentation
(Du et al., 2021). The kNN-MT used for machine
translation (Khandelwal et al., 2021) is an exten-
sion of kKNN-LM for conditional text generation —
it adds a new hyperparameter 7' to control softmax
temperature in the interpolated probability.

8 Conclusion

In this paper, we have proposed a novel and ef-
fective re-formulation of the kNN-LM. Our ap-
proach uses an adaptive interpolation coefficient
conditioned on the query and retrieved documents
— queries that retrieve at least one highly similar
item assign a higher weight to the kNN probabil-
ity. Although this adds many new hyperparameters
to tune, the additional computational cost is negli-
gible. Our analysis supports the intuition behind
the adaptive coefficient and provides insights on
which types of tokens KNN-LM is most helpful
for. Importantly, our experimental results verify
the effectiveness of our new method, which pro-
vides nearly 4% improvement in test perplexity on
the Wikitext-103 language modeling corpus.

Limitations

The KNN-LM leverages a datastore, and when pop-
ulated with text relevant for the task domain, can be
used to improve language modeling performance.
The benefits of this procedure are data dependent
and domain-specific, and the same applies to the
adaptive coefficient technique that we introduce.

The adaptive coefficient requires many more tun-
able hyperparameters. To address this, we release
an optimized codebase to perform this hyperpa-
rameter search in neglible time compared with the
original kNN-LM.

Ethical Concerns and Impact

Even when used with the best intentions language
models can produce malicious or harmful text, and
guards are typically used to account for inherent
bias or undesirable output. In our case, we do not
generate text and simply use the model to evalu-
ate perplexity on existing data, so effectiveness of
safety guards and their limitations is not a relevant
concern in this work.

References

Uri Alon, Frank F. Xu, Junxian He, Sudipta Sen-
gupta, Dan Roth, and Graham Neubig. 2022.
Neuro-symbolic language modeling with automaton-
augmented retrieval. ArXiv, abs/2201.12431.

Alexei Baevski and Michael Auli. 2019. Adaptive input
representations for neural language modeling. In In-
ternational Conference on Learning Representations.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann,
Trevor Cai, Eliza Rutherford, Katie Millican, George
van den Driessche, Jean-Baptiste Lespiau, Bogdan
Damoc, Aidan Clark, Diego de Las Casas, Aurelia
Guy, Jacob Menick, Roman Ring, T. W. Hennigan,
Saffron Huang, Lorenzo Maggiore, Chris Jones, Al-
bin Cassirer, Andy Brock, Michela Paganini, Geof-
frey Irving, Oriol Vinyals, Simon Osindero, Karen
Simonyan, Jack W. Rae, Erich Elsen, and L. Sifre.
2021. Improving language models by retrieving from
trillions of tokens. In ICML.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,

volume 33, pages 1877-1901. Curran Associates,
Inc.

Dangi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Association for Computational
Linguistics (ACL).

Jingfei Du, Edouard Grave, Beliz Gunel, Vishrav Chaud-
hary, Onur Celebi, Michael Auli, Ves Stoyanov,
and Alexis Conneau. 2021. Self-training improves
pre-training for natural language understanding. In
NAACL.

Angela Fan, Claire Gardent, Chloé Braud, and Antoine
Bordes. 2021. Augmenting transformers with knn-
based composite memory for dialog. Transactions of
the Association for Computational Linguistics, 9:82—
99.

Ameya Godbole, Dilip Chakravarthy Kavarthapu, Ra-
jarshi Das, Zhiyu Gong, Abhishek Singhal, Hamed
Zamani, Mo Yu, Tian Gao, Xiaoxiao Guo, Manzil
Zaheer, and Andrew McCallum. 2019. Multi-step
entity-centric information retrieval for multi-hop
question answering. ArXiv, abs/1909.07598.

Edouard Grave, Armand Joulin, and Nicolas Usunier.
2017. Improving neural language models with a
continuous cache. In International Conference on
Learning Representations.

Vivek Gupta, Akshat Shrivastava, Adithya Sagar,
Armen Aghajanyan, and Denis Savenkov. 2021.
Retronlu: Retrieval augmented task-oriented seman-
tic parsing. ArXiv, abs/2109.10410.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. ArXiv,
abs/2002.08909.

Helia Hashemi, Hamed Zamani, and W. Bruce Croft.
2020. Guided transformer: Leveraging multiple ex-
ternal sources for representation learning in conversa-
tional search. Proceedings of the 43rd International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval.

Trevor Hastie and Robert Tibshirani. 1995. Discrimi-
nant adaptive nearest neighbor classification and re-
gression. In Advances in Neural Information Pro-
cessing Systems, volume 8. MIT Press.

Junxian He, Taylor Berg-Kirkpatrick, and Graham Neu-
big. 2020. Learning sparse prototypes for text gener-
ation. In NeurIPS.

Junxian He, Graham Neubig, and Taylor Berg-
Kirkpatrick. 2021. Efficient nearest neighbor lan-
guage models. In EMNLP.

Nikhil Kandpal, Eric Wallace, and Colin Raffel. 2022.
Deduplicating training data mitigates privacy risks in
language models. ArXiv, abs/2202.06539.

https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/1995/file/fe709c654eac84d5239d1a12a4f71877-Paper.pdf
https://proceedings.neurips.cc/paper/1995/file/fe709c654eac84d5239d1a12a4f71877-Paper.pdf
https://proceedings.neurips.cc/paper/1995/file/fe709c654eac84d5239d1a12a4f71877-Paper.pdf
https://proceedings.neurips.cc/paper/1995/file/fe709c654eac84d5239d1a12a4f71877-Paper.pdf
https://proceedings.neurips.cc/paper/1995/file/fe709c654eac84d5239d1a12a4f71877-Paper.pdf

Nora Kassner and Hinrich Schiitze. 2020. BERT-kKNN:
Adding a kNN search component to pretrained lan-
guage models for better QA. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 3424-3430, Online. Association for Computa-
tional Linguistics.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2021. Nearest neigh-
bor machine translation. In International Conference
on Learning Representations.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Generalization
through Memorization: Nearest Neighbor Language
Models. In International Conference on Learning
Representations (ICLR).

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2022. Deduplicating training
data makes language models better. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8424-8445, Dublin, Ireland. Association for
Computational Linguistics.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 6086—-6096, Florence, Italy.
Association for Computational Linguistics.

Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kuttler, Mike Lewis, Wen tau Yih, Tim Rock-
taschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In NeurIPS.

Pedro Henrique Martins, Zita Marinho, and André F. T.
Martins. 2022. Chunk-based nearest neighbor ma-
chine translation. ArXiv, abs/2205.12230.

R. Thomas McCoy, Paul Smolensky, Tal Linzen, Jian-
feng Gao, and Asli Celikyilmaz. 2021. How much
do language models copy from their training data?
evaluating linguistic novelty in text generation using
raven. ArXiv, abs/2111.09509.

Yuxian Meng, Shi Zong, Xiaoya Li, Xiaofei Sun, Tian-
wei Zhang, Fei Wu, and Jiwei Li. 2022. GNN-LM:
Language modeling based on global contexts via
GNN. In International Conference on Learning Rep-
resentations.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-
mar, Chloe Hillier, and Timothy P. Lillicrap. 2020.
Compressive transformers for long-range sequence
modelling. In International Conference on Learning
Representations.

10

Alexandra Schofield, Laure Thompson, and David
Mimno. 2017. Quantifying the effects of text duplica-
tion on semantic models. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2737-2747, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Romal Thoppilan, Daniel De Freitas, Jamie Hall,
Noam M. Shazeer, Apoorv Kulshreshtha, Heng-
Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker,
Yu Du, Yaguang Li, Hongrae Lee, Huaixiu Zheng,
Amin Ghafouri, Marcelo Menegali, Yanping Huang,
Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao
Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts,
Maarten Bosma, Yanqi Zhou, Chung-Ching Chang,
I. A. Krivokon, Willard James Rusch, Marc Pick-
ett, Kathleen S. Meier-Hellstern, Meredith Ringel
Morris, Tulsee Doshi, Renelito Delos Santos, Toju
Duke, Johnny Hartz Sgraker, Ben Zevenbergen, Vin-
odkumar Prabhakaran, Mark Diaz, Ben Hutchinson,
Kristen Olson, Alejandra Molina, Erin Hoffman-
John, Josh Lee, Lora Aroyo, Ravindran Rajakumar,
Alena Butryna, Matthew Lamm, V. O. Kuzmina,
Joseph Fenton, Aaron Cohen, Rachel Bernstein, Ray
Kurzweil, Blaise Aguera-Arcas, Claire Cui, Mar-
ian Croak, Ed Chi, and Quoc Le. 2022. Lamda:
Language models for dialog applications. ArXiv,
abs/2201.08239.

Dietrich Wettschereck and Thomas Dietterich. 1993.
Locally adaptive nearest neighbor algorithms. In
Advances in Neural Information Processing Systems,
volume 6. Morgan-Kaufmann.

Yuhuai Wu, Markus N. Rabe, DeLesley S. Hutchins, and
Christian Szegedy. 2022. Memorizing transformers.
In ICLR.

Frank F. Xu, Junxian He, Graham Neubig, and Vincent J.
Hellendoorn. 2022. Capturing structural locality in
non-parametric language models. In ICLR.

Dani Yogatama, Cyprien de Masson d’Autume, and
Lingpeng Kong. 2021. Adaptive semiparametric lan-
guage models. Transactions of the Association for
Computational Linguistics, 9:362-373.

Hamed Zamani, Fernando Diaz, Mostafa Dehghani,
Donald Metzler, and Michael Bendersky. 2022.
Retrieval-enhanced machine learning. In SIGIR °22.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. 2017. Understanding deep
learning requires rethinking generalization. In /CLR.

Xin Zheng, Zhirui Zhang, Junliang Guo, Shujian Huang,
Boxing Chen, Weihua Luo, and Jiajun Chen. 2021.
Adaptive nearest neighbor machine translation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 368-374,
Online. Association for Computational Linguistics.

https://doi.org/10.18653/v1/2020.findings-emnlp.307
https://doi.org/10.18653/v1/2020.findings-emnlp.307
https://doi.org/10.18653/v1/2020.findings-emnlp.307
https://doi.org/10.18653/v1/2020.findings-emnlp.307
https://doi.org/10.18653/v1/2020.findings-emnlp.307
https://openreview.net/forum?id=7wCBOfJ8hJM
https://openreview.net/forum?id=7wCBOfJ8hJM
https://openreview.net/forum?id=7wCBOfJ8hJM
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://openreview.net/forum?id=BS49l-B5Bql
https://openreview.net/forum?id=BS49l-B5Bql
https://openreview.net/forum?id=BS49l-B5Bql
https://openreview.net/forum?id=BS49l-B5Bql
https://openreview.net/forum?id=BS49l-B5Bql
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843
https://doi.org/10.18653/v1/D17-1290
https://doi.org/10.18653/v1/D17-1290
https://doi.org/10.18653/v1/D17-1290
https://proceedings.neurips.cc/paper/1993/file/5f0f5e5f33945135b874349cfbed4fb9-Paper.pdf
https://doi.org/10.18653/v1/2021.acl-short.47

