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Abstract

Neural network models with character-
level inputs have recently proven to be
well-suited for a variety of NLP tasks. In
this project, we measure the effect of us-
ing various sub-word units as input instead
of characters. Comparing many segmen-
tation schemes on both part-of-speech tag-
ging and chunking, we observe that char-
acters are quite a strong baseline. We
reach almost identical performance with
some mild segmentation heuristics, but too
aggressive approaches lead to worse re-
sults. Compared to the state-of-the-art, our
chunking models are somewhat inferior,
and comparisons to previous work indicate
that it may be important to integrate hand-
designed features, possibly because of the
smaller size of the training data.

1 Introduction

Neural networks have been used for natu-
ral language processing tasks for more than a
decade [16] and have recently grown in popular-
ity [43]. These models generally represent words
as vectors, which may be pre-trained or adapted to
the task at hand. Word vectors may then be com-
bined, automatically extracting features that will
be helpful to accomplish a given task.

Models that use character-level inputs [39, 42,
41, 47, 25] rather than starting directly from words
have shown promising results. One of the advan-
tages of character-level models is their ability to
handle rare or unknown words through patterns
found in character frequency and context. Obvi-
ously, to learn from characters, there must be reg-
ularities in orthography or syntax, which appears
to be the case for the natural languages (at least the
ones that we understand).

Another alternative is to take a middle-ground
approach, using subword units instead [28, 44, 22,

31]. This approach may be beneficial in some sce-
narios for a few reasons. If segmentation is done
on the source side, every sentence would gener-
ally have less subword units than characters, so
training speed may be faster. On some difficult
problems, we hypothesize that such units would
make the optimization problem easier. Moreover,
if the segmentation is not too aggressive, such
models may still deal with unknown words, as
those based on characters. However, predefining
subwords units also has drawbacks. In particular,
a given segmentation may prevent the system to
learn about useful features, for example if the in-
teractions between two characters could be helpful
for a given task [42], but they belong to different
subword units.

In this project, we investigate the impact of
different word segmentation techniques on two
closely related tasks, part-of-speech tagging and
chunking [15, 14], using the neural network archi-
tecture described by Ling et al. [42]. On these two
tasks, restricting ourselves to using no additional
data or features other than characters or subword
units, the character-level baseline is quite hard to
beat. Some segmentation heuristics reach com-
parable performance, although these were mostly
conservative, with many short segments. More ag-
gressive segmentations generally did not perform
as well.

2 Tasks

2.1 POS tagging

For POS tagging we use the Penn WSJ treebank
(PTB), a collection of 2,499 stories from the WSJ
prior to 1993 [5]. This corpus contains 48 POS
tags composed of 36 regular POS tags such as
JJ, NN, and POS plus 12 other tags designating
punctuation and symbols. This dataset is divided
into 25 sections, and we’ve adopted the following
splits which have become the norm since Michael



Collins introduced them in 2002 [15]: train (0-18),
development (19-21), test (22-24).

We evaluated the models on the development
set using tag-level accuracy, although others have
used sentence-level and unknown word accuracy
in their experiments [18].

2.2 Chunking
In addition to POS tagging, we perform chunking
on the same dataset using IOB and BEISO tags.
We emphasize IOB tag results as they are the for-
mat used in Conference of Computational Natural
Language Learning in 2000 (Conll2000) [14].

The splits in this case are different: training (15-
18), development (21), test (20). They are the
same as in [15]. For the sake of comparing to
other models, it is perhaps more useful that the
train and test splits match the shared task of chunk-
ing from Conll2000 [14], which were originally
used in [11]. The development set was not used in
this shared task, but we use it for the sake of stan-
dardizing our code across both POS tagging and
chunking tasks, and it is used in other chunking
systems [15, 17].

IOB chunk tags have B indicate the beginning
of a chunk, I the outside, and O the outside.
BEISO tags are similar with the addition of two
tags. E indicates the end of a chunk (previously an
I), and S indicates a standalone chunk (previously
a B).

The chunklink script from Conll2000 1 uses tree
structure and POS tags to generate IOB chunk
tags. The PTB data does not have chunk tags, so
we use the chunklink script to generate them. It is
easy to go between IOB and BEISO format taking
the different tag rules into account.

We could have used the part-of-speech tags pro-
vided in the Penn TreeBank, but this would have
been unfair for the task of chunking, seeing that
the accuracy of the part-of-speech tags will be un-
realistically accurate (you could bypass learning
and use the chunklink script to generate perfect
chunk tags). For the Conll2000 shared task a Brill
Tagger was used to generate POS tags [14] for
the PTB dataset. We use a different Brill Tagger
from the NLTK framework 2, which has a rela-
tively low accuracy of 94.10% on the train set.
Comparatively, we measured the Conll2000’s POS
tags to have 96.44% accuracy on the train set.

1http://ilk.uvt.nl/team/sabine/chunklink/
chunklink 2-2-2000 for conll.pl

2https://github.com/japerk/nltk-trainer

Even though our own tagger had higher accuracy,
it would have been unfair to use since it was being
constantly validated against the POS development
set, which overlaps with the test set of the chunk-
ing tasks.

We evaluate chunking across all tags using F-
Score, which is how Conll2000 ranked competing
systems [14]. F-Score is a combination of Preci-
sion and Recall, all three of which are metrics bor-
rowed from Information Retrieval [1]. The value
of Precision is the measure of predicted chunks
over all chunks predicted, and Recall is the mea-
sure of correctly predicted chunks over all chunks
that are correct. This evaluation is done with a
script provided for the Conll2000 task. 3

3 Models

3.1 C2W model
The networks we built for this project are based
on the C2W (character-to-word) models initially
used by Ling et al. for POS tagging [42]. To deal
with unknown words and data sparsity, these mod-
els take as input characters instead of using words
directly. Each words’ characters are represented as
vectors in a look-up table and are composed with a
bidirectional LSTM [10, 21]. After, the final hid-
den state of each RNN may be combined in order
to obtain a word representation.

By themselves, such word embeddings would
not be sufficient to obtain a good tagger or chun-
ker since the word representations do not de-
pend on neighboring words and could not han-
dle tag ambiguity. As such, another bi-LSTM
composes the word embeddings to obtain such
context-dependent representations. These vectors
may then be transformed via a simple linear trans-
formation followed by a softmax layer to obtain
probabilities over tags or chunks.

The architecture is similar to the hierarchical
RNNs of Sordoni et al. [45], who successively
applied RNNs at different scales for the task of
query suggestion. In their model, the first RNN
processes words within a sentence, while another
combines sentence representations.

3.2 Architectural changes
Rather than using the publicly available imple-
mentation of the C2W models, 4 we reimple-
mented it with Theano [23, 26], using the neural

3http://cnts.ua.ac.be/conll2000/chunking/conlleval.txt
4https://github.com/wlin12/JNN



machine translation library dl4mt-material 5 as a
starting point. When running preliminary experi-
ments on POS tagging, we struggled reaching 97%
accuracy on the development set. Although only
test set scores were reported in Ling et al. [42], we
believed these results to be sub-optimal for C2W
models, in large part because the comparable Stan-
ford tagger could reach 97.28% on the develop-
ment set [24]. We modified the models somewhat
to try to bridge the gap between the observed re-
sults and our expectations.

Dropout

Arguably the most helpful change was the addi-
tion of dropout to the model [27, 34], where some
units of the neural networks are randomly dropped
during training, or scaled appropriately at the test
stage. Dropout may be thought of as an implicit
ensemble method, and has been recognized as a
strong regularizer [34]. Following a suggestion of
Zaremba et al. [33], we dropped the non-recurrent
inputs to all RNNs, at both hierarchical levels.
Moreover, we also applied the technique to the
feed-forward layer used just before predicting la-
bels.

GRU-LSTM hybrid

Based on validation set scores, mostly on the POS
tagging task, we also modified the recurrent units
of our models. We finally opted out for an hy-
brid between the GRU [32] and the LSTM [9].
More precisely, we reintroduced the input and for-
get gates of the LSTM instead of the GRU’s up-
date gate. In doing so, we also applied the recom-
mendation of Jozefowicz et al. [38, 12] to this hy-
brid, initializing the forget gate bias to 1 to reduce
the impact of the vanishing gradient problem [6].
Equations for this GRU-LSTM hybrid, with σ and
� denoting the sigmoid function and element-wise
product respectively, are given by

i(t) = σ(Wix
(t) + Uih

(t−1) + bi)

f (t) = σ(Wfx
(t) + Ufh

(t−1) + bf )

r(t) = σ(Wrx
(t) + Urh

(t−1) + br)

h̃(t) = tanh(Whx
(t) + Uh(r

(t) � h(t−1)) + bh)

h(t) = f (t)h(t−1) + i(t)h̃(t)

5https://github.com/kyunghyuncho/dl4mt-material

Feedback
For a minority of our chunking experiments, 6 we
also trained models with a slightly different ar-
chitecture. In addition to combining the output
of the word-level RNNs differently, concatenat-
ing the hidden states of the forward and backward
RNNs instead of applying linear transformations
and adding the resulting vectors, the prediction of
a given chunk would now depend on the previous
one. The top-level MLP now receives two inputs,
the embedding of the previous chunk as well as
the output of the recurrent neural networks. Dur-
ing training, we use the gold standard, whereas we
must rely on the network’s predictions at test time,
using beam search. Such feedback has previously
been applied in neural machine translation [32,
36].

3.3 Ensembling

A simple and common way to improve perfor-
mance of neural networks is ensembling [8],
where the predictions of multiple models are aver-
aged. Even with nearly identical networks, reshuf-
fling the data and changing the random seeds, as
in [35], may lead to improvements as the learning
objective is not convex. However, more variance
amongst (roughly equally good) models would
generally still be beneficial [8].

4 Word segmentation

We used characters as the basic input unit for the
model explained above. Apart from characters,
we can also use subword units as input. A po-
tential advantage of using subword units is that
they share the advantages of using a word level
model and are as general as character level mod-
els. Sennrich et al. [44] proposed a hypothesis
that segmentation of rare words into appropriate
subwords is sufficient to allow a neural network
to learn and generalize the transparent structure of
words. We further experimented with this hypoth-
esis by trying different segmentation techniques
including the one proposed by Sennrich et al.

4.1 N-grams

For this model, we used n-grams of a word as the
input to the model. We experimented with uni-
gram (character level) and bi-gram models.

6We also applied the model to POS tagging, but could not
get the results in time



4.2 BPE

Byte Pair Encoding [7] is a data compression tech-
nique in which the most common pair of bytes is
replaced with a byte that does not occur within that
data. This process is repeated iteratively. Sennrich
et al. [44] adapted this data compression technique
to word segmentation. Instead of replacing the
common byte, they merged most frequent charac-
ter pairs to create new symbols. For example:
aaabdaaabac → ZabdZabac → ZYdZYac →
XdXac

4.3 Vowel-based

Sometimes, it is not necessary that every word
needs to be segmented in subword units. We used
the heuristic-based word segmentation method de-
scribed in [28]. They kept the most frequent W
words and segmented the rest into subword us-
ing vowels as the split points. Next they kept the
most frequent S subwords and segmented the rest
into individual characters. At test time, we use
the counts from the training data to segment the
words. Hyper-parameters for this segmentation
technique are W and S. For example:
company interactive magazines → company
in+te+ra+cti+ve ma+ga+zi+ne+s

4.4 Hyphenation

The hyphenation algorithm is a set of rules that
decide at which point a word can be split over two
lines with a hyphen. It is widely used in TeX type-
setting systems and was first proposed by [2]. We
used this algorithm to find all possible split points
and use them as subwords. For example:
sophistication→ so + phis + ti + ca + tion

4.5 PMI-based

Finally, we tried a heuristic approach that we
thought could help alleviate perceived weaknesses
of BPE. In particular, when merging two consec-
utive frequent n-grams into a new one, the origi-
nal components may remain in the text, with low
frequency. As such, we disallowed merges that
would leave one of its original unit with a count
of less than 100, unless they would both become
0.

Moreover, rather than merging frequent consec-
utive n-grams, we opted to use a variant of point-
wise mutual information (PMI) [3] in order to
combine characters (or potentially n-grams) that
occur together more often than they should ac-

cording to their individual frequencies. To counter
the tendency of PMI to favor low-frequency to-
kens, the counts of the right tokens were raised
to the power of 0.75, as in [40]. We also multi-
plied the PMI scores of a pair by the logarithm of
its count.

After computing all modified PMI scores, we
ranked the allowed pairs and then greedily merged
consecutive characters for a given number of iter-
ations. We initially tried to recompute PMI before
each merge, similarly to BPE, but finally chose
not to do so as it was quite time-consuming. In
consequence, we only merge characters into bi-
grams, but the technique could be easily extended,
alternating between PMI computations and multi-
ple merges.

5 Results

Based on validation set performance, the dimen-
sionality of all vectors (subword/word embed-
dings, RNN hidden states, etc.) was set to 200
for POS tagging experiments, with dropout val-
ues between 0.5 and 0.7. 7 On the chunking
task, we reduced the capacity of the models, with
vectors of dimension 100. During training, we
used mini-batches of size 48, limiting target sen-
tences to length 60. Models were optimized with
Adadelta [29], clipping to gradients to 1 [30], and
we computed validation accuracy every 100 mini-
batches.

For characters, BPE and PMI-based models, we
used all available subword units. For bigrams and
other more aggressive segmentation approaches,
we used most of the vocabulary, but replaced some
of the rarest tokens by an unknown symbol.

5.1 POS tagging

We report results on POS tagging in table 1.
With our modified C2W models, we have ob-

tained a test accuracy of 97.18%, which is some-
what close to the result reported in [42], but still
somewhat inferior. We unfortunately cannot fig-
ure out the source of the discrepancy, as we be-
lieve our changes were beneficial, at least based
on validation set performance. We tried using the
JNN library 8 released by the authors of [42], but
could not reproduce the results, although this may
have been due to technical difficulties. For un-
known reasons, the code often crashed, although

7We initially tried the hyper-parameters mentioned in [42]
8https://github.com/wlin12/JNN



Model Accuracy (%)
Characters 97.18 (97.34)
BPE (100 merges) 97.23 (97.23)
PMI-based (50 merges) 97.16 (97.34)
Bigrams 97.11 (97.19)
Vowel-based 97.14 (97.19)
Hyphenation 96.48 (96.59)
Ensemble (13 models) 97.50 (97.62)
Brill [4] 94.59 (94.38)
Stanford [19] 97.32 (97.28)
Characters [42] 97.36
Characters + features [42] 97.57
LSTM-CRF (features) [37] 97.45

Table 1: POS tagging performance on the Penn
Treebank. Development set performance is re-
ported in parentheses, if known.

Wang Ling told us that he did not experience such
behaviour [48]. When it did so, it would reload
the model that had the lowest validation perplex-
ity (not the latest model, or the one with highest
validation accuracy), and resume training from the
beginning of the data.

With either BPE or the PMI-based approach,
we obtained very similar results as with charac-
ters. However, it is important to note that we did
few merges, so the segmentations were quite sim-
ilar to using characters. When we tried to increase
the number of merges, performance of the devel-
opment set worsened. For example, using BPE
with 500 merges and 1000 merges, development
set accuracy was 97.17% and 97.09% respectively.
Moreover, although we developed the PMI-based
heuristic to address what we thought were weak-
nesses of BPE, it did not help. As for bigrams, per-
formance appeared to drop somewhat, although by
a fairly small margin.

For the vowel-based method, the hyper-
parameters W and S changed the performance a
lot. With values of W and S set to 1000 and
2000 respectively, the subword segmentation per-
formed well, with a development set accuracy of
97.19 % and a test set accuracy of 97.14%. As we
increased W the performance dropped since the
model started to become a word level model and
lost the advantages of character level models, like
modelling unknown words better.

5.2 Chunking

Table 2 presents results on the chunking task, with
our models being trained on IOB tags. No seg-
mentation technique amongst those we tried sur-
passed characters. In fact, performance seems
to deteriorate more quickly than for POS tagging
when using aggressive segmentation techniques.

Model F-Score (%)
Characters 92.86 (92.37)
BPE (100 merges) 92.38 (91.94)
PMI-based (100 merges) 92.65 (92.42)
Bigrams 91.76 (91.41)
Vowel-based 90.10 (90.03)
Hyphenation 88.61 (88.03)
Characters + feedback 93.32 (92.86)
MaxEnt (NLTK) 92.20 (92.70)
MaxEnt (from Conll2000) [13] 91.97
Perceptron [20] 93.74
Bi-LSTM-CRF (features) [37] 94.46

Table 2: Chunking performance on the Penn Tree-
bank (all chunks). For fair comparison, all our
models were trained with IOB tags. Develop-
ment set performance is reported in parentheses,
if known.

Using feedback from the previously predicted
chunk appears useful, as we obtained our highest
performance with it. We also trained some models
with BEISO tags, converting them back to IOB be-
fore evaluation, but could not do so for all segmen-
tation techniques. In general, it appeared to have a
positive impact. For example, the character-based
model reached 92.63% and 93.01% on the devel-
opment and test set respectively.

We should note that contrarily to POS tagging,
the results we obtained on this task are pretty far
from the state of the art. In particular, even models
based on LSTMs (and CRFs) may reach upwards
of 94% [37]. Given the small size of the training
data, we believe adding pretrained POS tags may
be useful. We didn’t use those we obtained in the
other task because the chunking test section over-
laps with the POS development set. We also could
not get a Brill tagger to exactly replicate the POS
tags from the CoNLL 2000 training and test set,
and hence could not generate appropriate tags for
the validation data. We believe hand-crafted fea-
tures may also be useful here.



6 Conclusion

In this project, we reimplemented the POS tagging
model of Ling et al [42], as well as a few vari-
ants. We also applied these models to chunking, a
closely related task.

We had set to investigate the impact of using
different types of subword units as input to the
model and observed that characters are quite a
strong baseline, at least when restricted to using
no additional features. We could obtain fairly sim-
ilar results with many segmentation heuristics, but
none proved clearly superior.
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